https://metapractice.livejournal.com/568593.htmlОбнаружены нейроны, отвечающие за сознаниеЗа последнее столетие нейрофизиология продвинулась далеко вперед, однако то, как устроено большинство функций головного мозга до сих пор остается загадкой. Но, вполне возможно, что одной тайной, связанной с человеческой нервной системой стало меньше. Ведь недавно группа ученых из США открыла нейроны, которые поддерживают возбуждение центральной нервной системы. Или, если проще, отвечают за поддержку и, если можно так выразиться, «работу» нашего сознания.Как сообщает издание Proceedings of the National Academy of Sciences, группа исследователей из Рокфеллеровского университета, изучая строение нейронов ретикулярной формации, наткнулась на не совсем обычные клетки ЦНС. Для начала поясним, что же представляет из себя ретикулярная формация. Это часть ствола головного мозга — образования, которое соединяет головной и спинной мозг, отсюда и название. Ретикулярная формация отвечает за активацию коры, корковые функции и осуществляет контроль за рефлекторной деятельностью спинного мозга (так как частично расположена и здесь). Помимо этого ретикулярная формация оказывает влияние на эмоциональное поведение, играет роль в процессе обучения и запоминания, регулирует фазы глубокого сна и так далее.Есть в ретикулярной формации образование под названием гигантоцеллюлярное ядро (NGC). Изучая его и воспользовавшись технологией retro-TRAP (если упрощенно – исследование сосудов), эксперты обнаружили, что в нейронах NGC происходит экспрессия генов, при которой вырабатывается эндотелиальная синтетаза оксида азота (eNOS). Это фермент, который производит оксид азота, расслабляющий кровеносные сосуды, из-за чего к тканям увеличивается приток крови.Стоит заметить, что ни один из известных видов нейронов не производит eNOS, а клетки NGC располагаются очень близко к кровеносным сосудам, что в позволяет им «контролировать и возбуждать самих себя». Это позволило ученым сделать вывод о том, что они имеют определяющее значение в поддержании возбуждения центральной нервной системы и постоянном поддержании сознания «в тонусе». По словам Дональда Праффа, руководителя Лаборатории нейробиологии и поведения при Рокфеллеровском университете:
«Мы считаем, что, раз эти нейроны нуждаются в большем количестве кислорода и глюкозы, то они выделяют оксид азота в ближайшие сосуды, что и поддерживает их работу».
О сознании в статье речи нет)Речь идет о поддержании возбуждения посредством связи с талямусом.http://www.pnas.org/content/115/29/E6900/tab-article-infoSignificanceCertain large neurons deep in the brainstem, in the nucleus gigantocellularis (NGC), are crucial for waking up the brain from deep sleep, anesthesia, or injury. NGC neurons, which project axons to central thalamus, should be especially important because central thalamic stimulation heightens CNS arousal in animals and in human patients. We have used the retroTRAP technique to discover mRNAs enriched in such NGC neurons. One mRNA, for endothelial nitric oxide synthase (eNOS), is uniquely expressed. By experiments both on the environmental/sensory side and with respect to motoric regulation, endothelial nitric oxide expression is shown to be functionally important. Five independent lines of evidence indicate that these eNOS neurons have a significant relation with their blood supply.AbstractNeurons of the medullary reticular nucleus gigantocellularis (NGC) and their targets have recently been a focus of research on mechanisms supporting generalized CNS arousal (GA) required for proper cognitive functions. Using the retro-TRAP method, we characterized transcripts enriched in NGC neurons which have projections to the thalamus. The unique expression and activation of the endothelial nitric oxide (eNOS) signaling pathway in these cells and their intimate connections with blood vessels indicate that these neurons exert direct neurovascular coupling. Production of nitric oxide (NO) within eNOS-positive NGC neurons increases after environmental perturbations, indicating a role for eNOS/NO in modulating environmentally appropriate levels of GA. Inhibition of NO production causes dysregulated behavioral arousal after exposure to environmental perturbation. Further, our findings suggest interpretations for associations between psychiatric disorders and mutations in the eNOS locus.
Insight & IntelligenceJuly 10, 2018Blood Protein Linked to Mental DisordersConsciousness-Aiding Protein Produced by Cells Deep in the BrainstemJulianna LeMieux, Ph.DResearchers from several New York institutions have uncovered a key molecular component of mental health disorders involving uncontrollable reactions to stimuli (i.e., bi-polar disorder, attention deficit hyperactivity disorder [ADHD], and major depression). The paper, published in the Proceedings of the National Academy of Sciences, is entitled “Molecular profiling of reticular gigantocellularis neurons indicates that eNOS modulates environmentally dependent levels of arousal.”The research team, led by Joel Stern, Ph.D., an associate professor of Neurology at Zucker School of Medicine at Hofstra/Northwell and an associate professor of Molecular Medicine at the Feinstein Institute for Medical Research, focused on a subset of neurons located deep in the brainstem, in the area just above the spinal cord, known as the nucleus gigantocellularis (NGC). Some of the neurons in the NGC project to the thalamus, which is responsible for maintaining wakefulness and consciousness. When the NGC is damaged or the projections to the thalamus are interrupted, consciousness can be lost. In addition, these neurons are critical for the initiation of conscious movements and waking the brain from certain stages such as deep sleep, anesthesia, or injury. When this process, called “generalized CNS arousal” (GA) does not work properly, disorders may result.When asked why he focused on the neurons of the NGC, Dr. Stern responded, “We wanted to figure out the role that these NGCs play in consciousness. Because NGCs are involved in arousal, it puts them in the center of brain functioning.”A Blood Gene Found in the BrainAlthough the NGC has been recognized as a key player in proper brain function, information regarding its gene expression has remained limited. The underlying reason for this was, in large part, the inability to isolate the NGC cells. Dr. Stern and colleagues utilized the retro-TRAP (translating ribosome affinity purification from retrogradely labeled neurons) technique, developed by the Freidman lab at The Rockefeller University in 2013, which allowed for the successful isolation of the NGC neurons.Using this technique, the researchers were able to detect mRNA specifically from the NGC neurons, resulting in the first transcriptome from these cells. After sequencing and analyzing the transcripts, the enzyme endothelial nitric oxide synthase (eNOS,) which leads to the production of nitric oxide (NO), was found to be uniquely expressed. This novel finding led them to probe the role of eNOS in brain functioning.Both humans and mice have three distinct NO synthase enzymes: neuronal nNOS, endothelial eNOS, and inducible iNOS (induced by cytokines of the immune system.) Because eNOS is generally found in blood vessels, its expression in neurons was an unexpected finding. Dr. Stern says the team was “surprised at the finding that the eNOS pathway was in the neurons.” The group then established a close relationship between the eNOS-positive neurons and the blood supply.
eNOS Controls BehaviorThe researchers sought to determine under which conditions eNOS was active in the NGC neurons. More specifically, they wanted to assess if eNOS was activated in NGC neurons in response to changing environments. To do this, the researchers subjected mice to various environments, and monitored the activation of eNOS positive neurons by measuring nitrotyrosine levels, a protein modification that occurs due to NO production.The researchers exposed the mice to three environments: a clean cage containing novel scents, a shock chamber that delivered 15 mild and unpredictable foot shocks for the duration of one hour, and three repeated sessions of forced swim with periods of recovery under a heat lamp. For each of the three exposures, the brains of the animals were collected and nitrotyrosine was measured. When mice were in their home cages, eNOS remained less active. However, upon switching to a new environment, the levels of eNOS increased. Out of the three conditions, the novel scents and forced swim conditions produced the largest amount of nitrotyrosine. Although the foot shock condition did not have the same effect—a result that Dr. Stern finds a “bit perplexing.” He also finds it interesting that different environments may result in varied levels of eNOS production.To test the role of increasing levels of NO in the modulation of GA, behavioral assays were coupled with the microinfusion of a NOS production blocker N(G)-Nitro-L-arginine methyl ester (L-NAME) into the NGC. The animals that had their NO production blocked exhibited a strikingly different behavior upon returning to their home cage, after exposure to environmental perturbation (in this case, a cage with novel scents), then those who had received the control (saline) injection. The L-NAME–injected mice remained highly active, lacking the ability to recover after a highly stimulating event. This suggests a link between eNOS production and certain mental disorders that occur due to a dysregulation of arousal.“We were not initially expecting that inhibiting eNOS would alter this particular behavior,” says Dr. Stern. However, he cites that “there have been associations between certain psychiatric disorders and the eNOS locus in GWAS studies that have looked at different patient populations with bipolar disorders, suicidality and ADHD.” Dr. Stern adds that their current study “sheds light onto the link between eNOS mutations and these disorders.”Unfortunately, Not a Great Drug TargetWhen asked about the potential for the development of therapeutics from this work, the first author of the paper, Inna Tabansky, Ph.D., cautions that eNOS-based drugs are probably not a possibility. She cites that because eNOS is a main player in the circulatory system with multiple roles, inhibiting it may lead to many unwanted side effects.Dr. Tabansky says that their goal is to “increase their understanding of how the eNOS expressing neurons interact with other neurons in the brain region to modulate behavior.” Researchers are trying to analyze that relationship by removing eNOS from these neurons. They also want to uncover the molecular profiles of other neurons in the region, as Dr. Tabansky suspects that other neurons may express eNOS as well, something that she is interested in researching further.https://www.genengnews.com/gen-exclusives/blood-protein-linked-to-mental-disorders/77901112
И авторы статьи, и мы в метапрактике подразумеваем одну из моделей сознания, заключающуюся в следующем суждении: "сознание" есть вся ментальная активность, которая выше определённого порога активации. Ментальная активность ниже того же порога есть подсознание/ бессознательное.Данная модель имеет вполне понятную феноменологию в своём основании. Это феноменология бодрствования-сна.