--Так сказать мог бы и опенметисhttp://www.livejournal.com/community/openmeta/134619.html--Так сказать мог бы НеОпенметисБазовая пресуппозиция первого кода:2 Сознание и тело - это части одной и той же кибернетической системы.Новшество:Сознание и тело взаимосвязаны, и функционируют, как открытая система, динамично и активно.Примечание: кибернетические системы являются закрытыми (статичными и реактивными).Теперь по поводу понятий: "открытая система", в противовес тому, как понимает это автор предполагаемых изменений. Вот по этому адресу есть такая публикация:ОБЩАЯ ТЕОРИЯ СИСТЕМ - КРИТИЧЕСКИЙ ОБЗОРhttp://www.ermak-ag.ru/libfiles/Baralanf1.doc?PHPSESSID=e5b3e621f86a54f6f4c5c0f99ccdc9a1Приведу некоторое количество цитат из нее, чтобы показать, что и с точки зрения теории равенство "кибернетические системы" = "закрытые системы" весьма упрощенно.
Суть этой концепции можно выразить в одном предложении следующим образом: организмы суть организованные явления, и мы, биологи, должны проанализировать их в этом аспекте. Я пытался применить эту организмическую программу в различных исследованиях по метаболизму, росту и биофизике организма. Одним из результатов, полученных мною, оказалась так называемая теория открытых систем и состояний подвижного равновесия, которая, по существу, является расширением обычной физической химии, кинетики и термодинамики. Оказалось, однако, что я не смог остановиться на однажды избранном пути и был вынужден прийти к еще большей генерализации, которую я назвал общей теорией систем.В настоящее время имеется ряд новых научных областей, стремящихся к осуществлению сходных целей. Мы кратко перечислим их.(1) Кибернетика, базирующаяся на принципе обратной связи, или круговых причинных цепях, и вскрывающая механизмы целенаправленного и самоконтролируемого поведения.(2) Теория информации, вводящая понятие информации как некоторого количества, измеряемого посредством изоморфного выражения отрицательной энтропии в физике, и развивающая принципы передачи информации.(3) Теория игр, анализирующая в рамках особого математического аппарата рациональную конкуренцию двух или более противодействующих сил с целью достижения максимального выигрыша и минимального проигрыша.(4) Теория решений, анализирующая аналогично теории игр рациональные выборы внутри человеческих организаций, основываясь на рассмотрении данной ситуации и ее возможных исходов.(5) Топология, или реляционная математика, включающая неметрические области, такие, как теория сетей и теория графов.(6) Факторный анализ, то есть процедуры изоляции — посредством использования математического анализа — факторов в многопеременных явлениях в психологии и других научных областях.(7) Общая теория систем в узком смысле, пытающаяся вывести из общего определения понятия «система», как комплекса взаимодействующих компонентов, ряд понятий, характерных для организованных целых, таких, как взаимодействие, сумма, механизация, централизация, конкуренция, финальность и т. д., и применяющая их к конкретным явлениям.
Все перечисленные теории имеют определенные общие черты. Во-первых, они сходятся в том, что необходимо как-то решать проблемы, характерные для бихевиоральных и биологических наук и не имеющие отношения к обычной физической теории.Во-вторых, эти теории вводят новые по сравнению с физикой понятия и модели, например обобщенное понятие системы, понятие информации, сравнимое по значению с понятием энергии в физике.В-третьих, эти теории, как указывалось выше, имеют дело преимущественно с проблемами со многими переменными.В-четвертых, вводимые этими теориями модели являются междисциплинарными по своему характеру, и они далеко выходят за пределы сложившегося разделения науки. Например, если вы внимательно просмотрите ежегодники Общества исследований в области общей теории систем («General Systems»), вы легко обнаружите следующее немаловажное обстоятельство: сходные и даже тождественные по своей структуре рассуждения применяются к явлениям самых различных видов и уровней — от сетей химических реакций в клетке до популяций животных, от электротехники до социальных наук.Аналогичным образом основные понятия кибернетики вытекают из определенных специальных областей современной техники, однако, начав с простейшего случая термостата, который на основе обратной связи поддерживает определенную температуру, и, переходя дальше к сервомеханизмам и автоматике в современной технике, мы обнаруживаем, что подобные же схемы применимы ко многим биологическим явлениям регулирования или поведения.Более того, во многих случаях имеется формальное соответствие, или изоморфизм, общих принципов и даже специальных законов. Одно и то же математическое описание может применяться к самым различным явлениям. Из этого, в частности, вытекает, что общая теория систем, помимо всего прочего, облегчает также научные открытия: ряд принципов может быть перенесен из одной области в другую без необходимости дублирования работы, как это часто происходило в науке прошлого.В-пятых и, может быть, самое важное — такие понятия, как целостность, организация, телеология и направленность движения или функционирования, за которыми в механистической науке закрепилось представление как о ненаучных или метафизических, ныне получили полные права гражданства и рассматриваются как чрезвычайно важные средства научного анализа. В настоящее время мы располагаем концептуальными и в некоторых случаях даже материальными моделями, способными воспроизводить основные свойства жизни и поведения.
Следует подчеркнуть, что различные вышеперечисленные научные подходы не являются и не должны рассматриваться как монопольные. Один из важных аспектов современного развития научной мысли состоит в том, что мы более не признаем существования уникальной и всеохватывающей картины мира. Все научные построения являются моделями, представляющими определенные аспекты, или стороны, реальности.Это относится также и к теоретической физике. Будучи далекой от того, чтобы быть метафизическим представлением последней реальности (как это провозглашалось материализмом прошлого и все еще подразумевается современным позитивизмом), она является не чем иным, как одной из этих моделей, и, как показало развитие науки в последнее время, ни в коем случае не исчерпывающей и не единственной.Различные теории систем также являются моделями различных аспектов мира. Они не исключают друг друга и часто сочетаются при их использовании. Например, некоторые явления могут быть научно исследованы кибернетикой, другие — с помощью общей теории систем, причем вполне допустимо даже, что одно и то же явление в его различных аспектах может быть описано и тем и иным путем.Кибернетика соединяет модели информации и модель обратной связи, модели нервной системы и теории информации и т. д. Это, конечно, не исключает, а скорее предполагает возможность последующих синтезов, в которые войдут и будут объединены различные современные исследования целостности и организации.И действительно, в настоящее время постепенно строится такая синтетическая концепция, объединяющая, например, термодинамику необратимых процессов и теорию информации. Различия между перечисленными теориями лежат в их особых модельных представлениях и в используемых математических методах. Поэтому мы переходим к вопросу о том, какими путями может быть осуществлена программа системного исследования.
Однако, преодолевая ограниченность, Эшби ввел новое определение. Его «современное определение» системы как «машины со входом», как это было показано ранее, ставит на место общей модели системы специальную кибернетическую модель, то есть систему, открытую для информации, но закрытую для передачи энтропии. Это становится очевидным при применении этого определения к «самоорганизующимся системам».Самодифференцирующиеся системы, развивающиеся в направлении все более высокой сложности (путем уменьшения энтропии), возможны — по термодинамическим соображениям — только как открытые системы, то есть системы, в которые вещество, содержащее свободную энергию, входит в количестве, большем, чем необходимо для компенсации роста энтропии, обусловленного необратимыми процессами внутри системы («внесение отрицательной энтропии»). При этом мы не можем сказать, что изменение является результатом действия «некоторого внешнего агента, воздействующего на систему как ее вход»; дифференциация внутри развивающегося эмбриона или организма происходит согласно внутренним законам их организации, а соответствующий вход системы (например, снабжение кислородом, которое можно варьировать количественно, или пища, качественно различающаяся в широких пределах) делает такую дифференциацию возможной только энергетически.
3. ГОМЕОСТАЗИС И ОТКРЫТЫЕ СИСТЕМЫСреди упомянутых теоретических моделей кибернетическая модель гомеостазиса и модель открытой системы, развиваемая в рамках общей теории систем, претендуют на объяснение многих эмпирических явлений. Поскольку отношение этих двух теорий не всегда хорошо осознают, уместно кратко остановиться на этом вопросе.В применении к живым организмам схема обратной связи выступает в форме гомеостазиса.Согласно Кэннону, гомеостазис представляет собой совокупность органических регуляций для поддержанияустойчивого состояния организма, причем действие регулирующих механизмов может происходить не в одном и том же, но нередко в разных и даже противоположных направлениях — сообразно соответствующим внешним изменениям, которые подчиняются некоторым физическим законам.В отличие от кибернетики, занимающейся анализом механизмов обратной связи, общую теорию систем интересует динамическое взаимодействие внутри систем со многими переменными. Причем для живых организмов наибольшее значение в этой связи имеет исследование понятия открытой системы. Для такой системы характерно, что в нее постоянно вводится извне вещество. Внутри системы вещество подвергается различным реакциям, которые частично дают компоненты более высокой сложности. Именно это мы называем анаболизмом. Одновременно с этим происходит катаболизация вещества и конечные продукты катаболизма выводятся из системы.Некоторые черты открытых, в отличие от закрытых, систем состоят в том, что при соответствующих условиях открытая система достигает состояния подвижного равновесия, в котором ее структура остается постоянной, но в противоположность обычному равновесию это постоянство сохраняется в процессе непрерывного обмена и движения составляющего ее вещества. Подвижное равновесие открытых систем характеризуется принципом эквифинальности, то есть в отличие от состояний равновесия в закрытых системах, полностью детерминированных начальными условиями, открытая система может достигать не зависящего от времени состояния, которое не зависит от ее исходных условий и определяется исключительно параметрами системы. Таким образом, «обратная связь» и «открытая система» — это две модели биологических и, возможно, бихевиоральных явлений вообще.Следует уяснить, что термин «гомеостазис» может употребляться двояко. Он используется либо в его первоначальном смысле, предложенном Кэнноном и иллюстрируемом примерами поддержания температуры тела и других физиологических переменных с помощью механизмов обратной связи, либо в другом смысле, который нередко имеют в виду, а именно как синоним для органической регуляции и адаптации вообще. Конечно, это вопрос семантики.Тем не менее, использование терминов в том смысле, который первоначально вкладывался в них их авторами, — мудрое правило в естественных науках. Поэтому я предлагаю употреблять слово «гомеостазис» в его более узком, но четко определенном смысле, и это имеет важные последствия, поскольку при этом обнаруживаются определенные ограничения, о которых часто забывают.Кажется очевидным, что первичные регуляции в организме обусловлены динамическим взаимодействием внутри единой открытой системы, которая восстанавливает свое подвижное равновесие.На них накладываются в результате прогрессирующей механизации вторичные механизмы регуляции, управляемые фиксированными структурами преимущественно типа обратной связи.