Полное совпадение, включая падежи, без учёта регистра

Искать в:

Можно использовать скобки, & («и»), | («или») и ! («не»). Например, Моделирование & !Гриндер

Где искать
Журналы

Если галочки не стоят — только metapractice

Автор
Показаны записи 3021 - 3030 из 30962
http://metapractice.livejournal.com/531417.html
Сознание (26) Само себе принадлежащее сознание
http://metapractice.livejournal.com/529088.html
St. Neuronet (14) Квоты на необузданный прогресс
http://metapractice.livejournal.com/525104.html
Обучение (6) Глобальный «перегрев» обучения
http://metapractice.livejournal.com/523133.html
Модель субличности (15) Сознание есть система субличностей/сознаний
http://metapractice.livejournal.com/521079.html
Карго-моделирование (2) Эмерджентность нейро сетевых свойств
http://metapractice.livejournal.com/501656.html

Как мозг ограничивает нашу свободу: объясняет нейроэкономист Василий Ключарев
https://daily.afisha.ru/brain/3085-kak-mozg-ogranichivaet-nashu-svobodu-obyasnyaet-neyroekonomist-vasiliy-klyucharev/
МАНИФЕСТ НЕЙРОНЕТА Единство технологической эволюции и эволюции сознания
http://globalneuroweb.org/ru/manifesto
Давид Ян: Искусственный интеллект будет совершенствовать сам себя
http://sukhov.com/blog/david-yan-iskusstvennyiy-intellekt-budet-sovershenstvovat-sam-sebya/
Homo ex machina: перспективы перемещения сознания на другой носитель
https://geektimes.ru/company/mailru/blog/280728/


</>
[pic]
И немного в заключение

metanymous в посте Metapractice (оригинал в ЖЖ)

Если мы подключим к мозгу вторичную искусственную нейронную сеть, можно ожидать, что за счёт нейропластичности наше сознание постепенно освоит новое пространство, распространится на него, и на втором этапе мы получим некое новое сознание: модификацию нашего сознания, существующую на комбинированном субстрате. Первая часть субстрата — тот биологический мозг, который у нас был вначале, а вторая часть — искусственная нейронная сеть. Затем, например, биологическая часть отрезается, отмирает.

Допустим, мы так рассчитали размеры новой нейронной сети и её структуру, что на её фоне изначальное «обиталище» нашего сознания стало сравнительно малой и несущественной частью этого большого мозга. Точно так же, как изъятие небольших частей нервной ткани из мозга человека зачастую не приводит к фатальным утратам для его сознания. Такой способ выглядит более комфортным, чем простое копирование, ведь при копировании будет создана всего лишь копия «я», в то время как оригинал останется прозябать в тленной биологической оболочке.

Конечно, существует целый ряд нюансов и парадоксов, связанных с континуальностью сознания, выходящих далеко за рамки этого рассказа. Однако есть надежда, что мы всё-таки создадим технологии, которые позволят надолго отсрочить наступление уже маячащей на горизонте неумолимой смерти.

Предыдущие выпуски:

</>
[pic]
...

metanymous в посте Metapractice (оригинал в ЖЖ)


Есть какие-то полумеры, геропротекторы. Идея состоит в отключении механизма старения. Сейчас небольшая группа исследователей, возглавляемая мной, работает с крупной биотехнологической компанией, помогая своими знаниями в области data science в проекте, связанном с биологическим продлением жизни. Вероятно, мы продлим на какое-то время своё существование при помощи биохакинга — путём вмешательства в биохимические сигнальные пути организма, но такое решение выглядит довольно хрупко: наши тела не очень надёжны.

Как ещё может выглядеть технология, которая продлевает существование сознания? Один из возможных путей — это своеобразный постнеокортекс. Мы создаём инвазивный (а может, даже и неинвазивный) интерфейс и при помощи него прикрепляем к нашему неокортексу огромную искусственную нейронную сеть, которая по размерам, по количеству клеток, синапсов и так далее на несколько порядков больше, чем наша естественная нейронная сеть.

Науке давно известен эффект нейропластичности: мозг очень хорошо адаптируется к поступающим в него сигналам. Первые эксперименты, продемонстрировавшие нейропластичность, провёл ещё в XIX веке французский врач и физиолог Мари-Жан-Пьер Флуранс. Флуранс брал петуха, перерезал ему нервы, ведущие к мышцам — сгибателям и разгибателям крыла, и сшивал их крест-накрест. Сигнал, которым птица пыталась согнуть крыло, теперь попадал в мышцу-разгибатель, и наоборот. Первое время петух не мог летать, но позже мозг приспособился к изменившейся ситуации, и птица снова выучилась полёту.

Множество случаев травм головного мозга показывали, что даже с очень серьёзными функциональными повреждениями нейронной сети человек в состоянии сохранить свою личность, активность, воспоминания и т. д., хотя и с некоторыми провалами. Приведём в пример аппараты искусственного зрения. Сигнал попадает не совсем туда, куда он попадает от настоящего глаза. Требуется время, чтобы мозг приспособился к восприятию этой картинки.

Есть и более удивительные истории, связанные с нейропластичностью. Сёстры Татьяна и Криста Хоган — краниопаги, т. е. сиамские близнецы, соединённые в районе головы. Явление крайне редкое, один случай на 6 млн рождений. Криста и Татьяна уникальны даже среди краниопагов: мозг одной сестры соединён с мозгом другой. Нейрохирурги обнаружили, что у них связаны глубокие области мозга — таламусы. Через таламус проходит информация от органов чувств, чтобы затем попасть в кору головного мозга. У девочек образовалась уникальная структура — «таламический мост»: толстый канал из нейронных отростков, который отчётливо виден на сканах. Нервные сигналы от ствола головного мозга Кристы могут поступать в мозг Татьяны, и наоборот.
</>
[pic]
...

metanymous в посте Metapractice (оригинал в ЖЖ)


Сейчас наука весьма существенно отодвинула эту границу, в том числе в сфере создания искусственных живых организмов (недавно завершился очередной проект по созданию собранной с нуля работающей клетки). В этом плане спорить с экспериментом и практикой трудно. Но сама интенция оставить за жизнью, за сознанием какую-то площадь, недоступную для науки и человеческой технологии, по-прежнему существует. Некоторым людям очень не хочется, чтобы наши технологии стали применяться к нам самим и к нашему сознанию. В чём причина? Иногда людям кажется, что если мы что-то объяснили, то тем самым уничтожили святость, сакральность. Если мы объяснили, как написано стихотворение, как оно устроено, то в глазах некоторых людей оно почему-то становится менее прекрасным. Открытие тайн работы человеческого сознания по какой-то причине воспринимается как унижающее человека явление.

Другой момент связан с этической стороной исследований. Представьте себе ужас первого человеческого сознания, перенесённого в машину. Крайне ненадёжный субстрат. А если отключат электроэнергию? Полная зависимость от тех, кто управляет этой модельной средой. И человек, который первым захочет это сделать, наверное, должен быть очень смелым и самоотверженным исследователем. Хотя ему-то самому как бы ничего не будет: будет что-то его копии, собранной внутри машины. Но всё равно неприятно ощущать, что там, в машине, есть второй ты, которому сейчас, наверное, очень плохо.

Поэтому даже когда задача переноса сознания в машину технически решится, это не будет автоматически означать, что такого рода технология станет применяться повсеместно. Возможно, всё и ограничится лабораторными экспериментами. Потому что с практической точки зрения, возможно, куда важнее создание более эффективных интерфейсов «машина — мозг» и расширение, аугментация нашего собственного тела.

Все в какой-то момент задумываются о смерти. У меня это произошло лет в девять-десять, и мысли о том, что умрут родители, что умру я, вызывали весьма тяжёлые переживания. Взрослея, люди учатся отвлекаться, чтобы не испытывать экзистенциальный ужас непрерывно, изобретают какие-то формы самообмана, создают в мыслях сценарии, снижающие общую тревожность. У кого-то в их основу ложатся религиозные фантазии — жизнь после смерти. У человека более рационального подобный внутренний нарратив чаще основывается на мыслях о технологиях, которые когда-то будут доступны: мне обязательно повезёт, я всё-таки не умру по крайней мере ещё сотню-другую лет.
</>
[pic]
Альтернативы

metanymous в посте Metapractice (оригинал в ЖЖ)

Задача переноса человеческого сознания в машину на сегодняшний день по большей мере инженерная. Критики могут говорить о том, что полностью работающей системы у нас пока нет, о том, действительно ли система (когда/если она будет создана) окажется неотличимой от оригинального человеческого сознания. Будет ли это интеллект в машине или очень слабая и неудачная копия?



Ещё одна, совсем уже маргинальная точка зрения: учёные ошибаются, считая, что человеческое сознание и человеческая личность редуцируются до электромагнитной активности мозга. Наталья Бехтерева, внучка известного физиолога В. М. Бехтерева и многолетний директор Института мозга человека РАН, заявляла, что сознание существует в тонких сферах, а мозг — это просто принимающее устройство, своего рода антенна. Конечно, с точки зрения современной науки это звучит крайне наивно и не подтверждается экспериментами. Искусственные нейронные сети, которые мы создаём, вполне способны решать сложные интеллектуальные задачи, не говоря уже о том, что в рамках проекта Blue Brain было показано: можно воспроизвести по крайней мере часть мозга. Большая часть учёных считает аплоадинг технически возможным в недалёком будущем. Отдельные энтузиасты вроде Яна Корчмарюка предлагают даже вынести исследовательскую и инженерную работу в этом направлении в отдельную дисциплину — так называемую «сеттлеретику».

Помимо наивных возражений против возможности загрузки сознания в машину существуют и почти научные контраргументы. Например, иногда критики говорят о том, что в работе мозга важную роль могут играть эффекты квантового уровня: существование неопределённости Гейзенберга не позволит достаточно точно отсканировать активность мозга и без потерь перенести сознание на другой носитель, потому что природа сознания квантовая.

Пока нет серьёзных оснований считать, что в мозге присутствуют какие-то квантовые эффекты (и, стало быть, что погрешность порядка, близкого к постоянной Планка, приведёт к искажению деятельности мозга, сознания, психики). Впрочем, в этом году появилось предположение, что в работе мозга определённую роль может играть распространение световых сигналов через глиальную ткань; это в силах несколько (но вряд ли существенно) снизить энергетические пороги информационного обмена. Но световые эффекты — это не только источник некоторого скепсиса. Широкие перспективы в создании инвазивных нейроинтерфейсов открывает оптогенетика, возникшая как направление исследований в 2005 году. Это методика, основанная на внедрении в мембрану нервных клеток специальных каналов — опсинов, реагирующих на возбуждение светом. Для экспрессии каналов используются особые вирусные векторы, а для последующей активации либо ингибирования нейронов и их сетей — лазеры, оптоволокно и другая оптическая аппаратура.

Если честно, я считаю, что позиция скептиков в вопросе загрузки сознания в машину — всего лишь очередная инкарнация витализма. В своё время, когда учёные заикались о единстве материального мира, приверженцы религиозной точки зрения пытались доказать, что живую материю нельзя создать искусственно, что барьер между неорганической и органической материей непреодолим. И пока лабораторно не был продемонстрирован синтез органических веществ, эта точка зрения бытовала даже среди образованных людей своего времени.
Ещё более интересная история — протезирование конечностей. Подключение нас к внешним устройствам, оперирующим в реальном мире. Мигель Николелис, известный пионер в этой области, продемонстрировал первую систему с замкнутым циклом обратной связи. В опытах Николелиса использовались макаки-резусы и инвазивный интерфейс — массив электродов, имплантированный в двигательную кору. Данные собираются, преобразуются, фильтруются и передаются в манипулятор.

При этом обезьяна может видеть свои манипуляции. До Николелиса все подобные устройства работали односторонне, данные передавались только из двигательной коры в устройство, но не обратно. В данном случае цикл был замкнут полностью.

В ролике представлены кохлеарные импланты. Они позволяют в ряде случаев вернуть слух людям, лишённым его от рождения либо утратившим его из-за болезней.
Более технически сложна задача передать изображение обратно: из машины в мозг. Большой интерес к ней обусловлен потенциальным медицинским применением для создания эффективных зрительных протезов. Первые успехи были достигнуты довольно давно. Исследователь Уильям Добелл в 1978 году изготовил первый работающий прототип аппарата искусственного зрения. Выглядел он довольно страшно: в мозг вживляли массив из 68 электродов. В те годы не было ни достаточно лёгких камер, ни высокопроизводительных микрокомпьютеров. Чтобы видеть, первый пациент (некто Джерри) подключался к мейнфрейму, который обрабатывал сигнал с камеры и преобразовывал его в последовательность сигналов для мозга. В мозге возникала чёрно-белая картинка с малым разрешением, частота смены кадров оказалась очень редкой; однако система всё-таки работала.

В 2002 году была открыта первая программа по коммерческому протезированию зрения. Усовершенствованные аппараты, наследники первого аппарата Добелла, стали устанавливать пациентам на коммерческой основе. В первой группе состояло 16 пациентов. Что позволял такой аппарат? Например, медленно водить машину. Один из самых известных пациентов Добелла — Дженс Науманн — показывал, что он может сесть за руль автомобиля и медленно ездить вокруг дома. Дженс отличал помидор или банан от яблока и даже распознавал крупно написанные символы.

Правда, закончилась история первой группы пациентов довольно грустно. Добелл в 2004 году достаточно неожиданно умер. Пациенты частного исследователя остались без попечения. Они видели всё хуже. Дженс Науманн во второй раз в жизни потерял зрение.

Это современная реклама зрительных протезов. В наши дни доступны протезы, которые превосходят модели Добелла. Другие исследователи смогли воспроизвести эту технологию в своих лабораториях.
</>
[pic]
"Изображения" из мозга

metanymous в посте Metapractice (оригинал в ЖЖ)

Изображения из мозга


Насколько эффективно можно получать данные из мозга? Умеем мы в этой области уже не так мало. Все нейроинтерфейсы можно разделить на два больших класса:

  • инвазивные предполагают физическое соединение интерфейса с нервной тканью, т. е. вмешательство в организм;
  • неинвазивные построены на электроэнцефалографии, магнитоэнцефалографии и иных дистанционных способах регистрации мозговой активности.



Здесь представлена картинка, которую получили из мозга кошки. Это работа 1999 года, выполненная в Калифорнийском университете в Беркли. В латеральное коленчатое тело (структура мозга, которая получает информацию непосредственно на выходе из сетчатки) мозга кошки вживили двумерный массив электродов, при помощи которого регистрировалась активность 177 нейронов. Один электрод может получать данные об активности единичной клетки.



А тут уже более поздняя работа — тот же эффект был получен в 2008 году с применением неинвазивного интерфейса, основанного на МРТ. Как мы знаем, у МРТ не очень хорошее временное разрешение — помогли специальные методы цифровой обработки; человеку показали набор простых картинок, а затем восстановили его, используя последовательные сканирования мозга.
Несколько слов об электромагнитной активности мозга. В конце XIX века выяснилось, что мозг генерирует слабый электрический ток. Впервые это явление описал Ричард Катон, английский физиолог и хирург. Несколько десятилетий спустя, в 1920-х гг. Ханс Бергер показал, что можно создать технологию сбора информации об электромагнитной активности мозга. В первых экспериментах Бергер использовал тонкие металлические электроды, которые вставлялись под кожу черепа. Чуть позже появилась менее инвазивная технология и первые электроэнцефалографы, которые через много лет усовершенствований стали одним из наиболее распространённых способов регистрации электромагнитной активности мозга.

Сейчас для сбора данных об электромагнитной активности мозга используются три основные технологии: электроэнцефалография, магнитоэнцефалография и позитронная эмиссионная томография. Однако у всех технологий пока что есть серьёзные проблемы с разрешающей способностью, пространственной и временной. На графике представлены сегодняшние достижения в этой сфере. По горизонтали — логарифмическая шкала, показывающая временное разрешение каждого метода, по вертикали — пространственное разрешение.



Что мы видим на графике? Во-первых, лучшее пространственное разрешение — около 0,75 мм. Это значит, что аппарат с таким разрешением будет регистрировать активность примерно 50 тыс. нейронов как единичный сигнал. Более того, аппараты с пространственным разрешением 0,75 мм существенно уступают своим аналогам по временному разрешению (около 60—120 секунд). Аппараты с хорошим временным разрешением (магнитоэнцефалографы) отличаются низким пространственным разрешением. По мнению большинства специалистов, наиболее перспективная технология — магнитоэнцефалография.

Что ограничивает её развитие? Многие десятки лет с появления первых магнитоэнцефалографов слабые магнитные поля, генерируемые мозгом, регистрировали при помощи так называемых SQUID-датчиков. Это высокочувствительные сверхпроводящие магнитные датчики, позволяющие регистрировать магнитные поля, на три с лишним порядка более слабые, чем магнитное поле Земли. Извечный спутник сверхпроводимости в технике — сверхдороговизна. Успехи в области создания высокотемпературных сверхпроводников пока достаточно скромны, а значит, датчики такого типа неизбежно тащат за собой громоздкую и дорогую систему охлаждения.

К счастью, в начале 2000-х годов появились ещё две технологии.

Первая из них — феррит-гранатовые мембраны, эта технология достаточно активно развивается у нас в стране. Пока по чувствительности они уступают SQUID-датчикам примерно два порядка. Учёные, которые занимаются развитием феррит-гранатовой технологии, говорят, что потенциально она способна превзойти SQUID-датчики по точности, оставаясь при этом весьма недорогой.

Вторая технология — датчики SERF (свободные от спин-обменного уширения). По точности SERF-технология находится на уровне SQUID; она дешевле, хотя и не столь дёшева, как феррит-гранатовые мембраны.

Дочитали до конца.