http://www.annualreviews.org/doi/full/10.1146/annurev.neuro.31.061307.0907231. Alonso A, Llinas RR. 1989. Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342:175–77 [CrossRef] [Medline] [Web of Science ®]2. Amit DJ. 1989. Modelling Brain Function: The World of Attractor Networks. New York: Cambridge Univ. Press3. Barlow JS. 1964. Inertial navigation as a basis for animal navigation. J. Theor. Biol. 6:76–117 [CrossRef] [Medline] [Web of Science ®]4. Barnes CA, McNaughton BL, Mizumori SJ, Leonard BW, Lin LH. 1990. Comparison of spatial and temporal characteristics of neuronal activity in sequential stages of hippocampal processing. Prog. Brain Res. 83:287–300 [CrossRef] [Medline] [Web of Science ®]5. Barry C, Hayman R, Burgess N, Jeffery KJ. 2007. Experience-dependent rescaling of entorhinal grids. Nat. Neurosci. 10:682–84 [CrossRef] [Medline] [Web of Science ®]6. Battaglia FP, Treves A. 1998. Attractor neural networks storing multiple space representations: a model for hippocampal place fields. Phys. Rev. E 58:7738–53 [CrossRef] [Web of Science ®]7. Blair HT, Welday AC, Zhang K. 2007. Scale-invariant memory representations emerge from moire interference between grid fields that produce theta oscillations: a computational model. J. Neurosci. 27:3211–29 [CrossRef] [Medline] [Web of Science ®]8. Blum KI, Abbott LF. 1996. A model of spatial map formation in the hippocampus of the rat. Neural Comp. 8:85–93 [CrossRef] [Medline] [Web of Science ®]9. Blumenfeld B, Preminger S, Sagi D, Tsodyks M. 2006. Dynamics of memory representations in networks with novelty-facilitated synaptic plasticity. Neuron 52:383–94 [CrossRef] [Medline] [Web of Science ®]10. Bostock E, Muller RU, Kubie JL. 1991. Experience-dependent modifications of hippocampal place cell firing. Hippocampus 1:193–205 [CrossRef] [Medline]11. Brun VH, Otnass MK, Molden S, Steffenach HA, Witter MP, et al. 2002. Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 296:2243–46 [CrossRef] [Medline] [Web of Science ®]12. Burak Y, Fiete I. 2006. Do we understand the emergent dynamics of grid cell activity? J. Neurosci. 26:9352–54 [CrossRef] [Medline] [Web of Science ®]13. Burgess N, Barry C, O'Keefe J. 2007. An oscillatory interference model of grid cell firing. Hippocampus 17:801–12 [CrossRef] [Medline] [Web of Science ®]14. Buzsáki G. 1989. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31:551–70 [CrossRef] [Medline] [Web of Science ®]15. Buzsáki G, Leung LW, Vanderwolf CH. 1983. Cellular bases of hippocampal EEG in the behaving rat. Brain Res. 287:139–71 [CrossRef] [Medline]16. Callaway EM. 2005. A molecular and genetic arsenal for systems neuroscience. Trends Neurosci. 28:196–201 [CrossRef] [Medline] [Web of Science ®]17. Chawla MK, Guzowski JF, Ramirez-Amaya V, Lipa P, Hoffman KL, et al. 2005. Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus 15:579–86 [CrossRef] [Medline] [Web of Science ®]18. Chen LL, Lin LH, Green EJ, Barnes CA, McNaughton BL. 1994. Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp. Brain Res. 101:8–23 [CrossRef] [Medline] [Web of Science ®]19. Claiborne BJ, Amaral DG, Cowan WM. 1986. A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus. J. Comp. Neurol. 246:435–58 [CrossRef] [Medline] [Web of Science ®]20. Cooper BG, Mizumori SJ. 1999. Retrosplenial cortex inactivation selectively impairs navigation in darkness. Neuroreport 10:625–30 [CrossRef] [Medline] [Web of Science ®]21. Cressant A, Muller RU, Poucet B. 1997. Failure of centrally placed objects to control the firing fields of hippocampal place cells. J. Neurosci. 17:2531–42 [Medline] [Web of Science ®]22. Dan Y, Poo MM. 2004. Spike timing-dependent plasticity of neural circuits. Neuron 44:23–30 [CrossRef] [Medline] [Web of Science ®]23. DiMattia BV, Kesner RP. 1988. Role of the posterior parietal association cortex in the processing of spatial event information. Behav. Neurosci. 102:397–403 [CrossRef] [Medline] [Web of Science ®]