Полное совпадение, включая падежи, без учёта регистра

Искать в:

Можно использовать скобки, & («и»), | («или») и ! («не»). Например, Моделирование & !Гриндер

Где искать
Журналы

Если галочки не стоят — только metapractice

Автор
Показаны записи 7121 - 7130 из 30984
</>
[pic]
Альфы

metanymous в посте Metapractice (оригинал в ЖЖ)

Альфы -- это функциональные (выполняющие определённую функцию, играющие определённую роль, идеальные) объекты, по которым мы судим о продвижении (progress, "как много мы уже сделали?") и здоровье (health, "в проекте всё идёт хорошо") проекта. Альфы -- это абстракция того же сорта, какого "физическое тело" является абстракцией реальных физических объектов (да, это физическое тело имеет массу, а геометрическая точка имеет координаты.
Но мы связываем физические тела и математические точки как идеальные объекты с реальными объектами, и после надлежащего тренинга "склеиваем" в мышлении идеальные и реальные объекты. Поэтому об экземплярах альф в проекте принято говорить так, как будто они вполне реальны и существуют в мире, несмотря на все абстракции.
Альфы фиксируют компактное описание мира/теорию, удобную для решения каких-то практических проблем. Это нужно, чтобы иметь возможность повторно использовать известные нам способы рассуждений и решения задач для самых разных объектов. Так, мы думаем о "физическом теле" и "математических точках" единообразно, "как в учебниках физики и геометрии", а применимо это мышление к самым разным "реальным объектам вокруг нас" -- от летящей после удара ногой болонки до крутящегося по марсианской орбите космического корабля. В этой экономии мышления (учимся думать один раз, затем похоже думаем в самых разных ситуациях) и заключается смысл разделения альф и рабочих продуктов.
Например, учимся думать о "требованиях" -- а применяем потом это мышление к конкретным рабочим продуктам, которые можно найти на производстве "в реале": спецификациям требований, требованиям из текстов стандартов, user stories на карточках, записям в базе данных системы управления требованиями и т.д..
Несмотря на всю "идеальность" и "абстрактность", об альфах говорят как о вполне существующих в физическом мире -- поразумевая при этом их тождественность тем рабочим продкутам, по которым мы можем судить об их существовании. Так, можно определить альфу "моя любимая игрушка" -- и, хотя в детстве у меня это был нарисованный на ватмане пульт управления космическим кораблём, а сегодня это мой ноутбук, я могу говорить про прохождение "моей любимой игрушкой" состояний "полюбил", "разлюбил", "поломалась", "играю", "забросил" и т.д. -- независимо от того, какая именно это игрушка прямо сейчас. Если я говорю о "требовании" -- то меня не волнует, пункт ли это протокола совещания с представителями заказчика, или запись в базе данных системы управления требований, или фрагмент диаграммы какой-то модели требований. Для меня это "требование" -- и я после этого знаю, что с ним делать, и как о нём думать, я обсуждаю "требование" как реальный объект, существующий в мире, имеющий своё состояние и меня в этот момент мало волнует, что у этого требования есть ещё и какие-то особенности выражения (как при счёте яблок меня мало волнует, что их ещё и едят).
Формально ALPHA это Abstract-Level Progress Health Attribute, но неформально это просто "идеальный рабочий продукт", названный "альфой" для уменьшения путаницы с "реальными рабочими продуктами" и аббревиатура для него была подобрана задним числом. Альфы -- это то, что изменяется в проекте, и изменения чего мы хотим понимать, отслеживать, обеспечивать, направлять, контролировать.

Система
Это схема инженерного проекта, она же диаграмма альф инженерного проекта, она же диаграмма основ системной инженерии (systems engineering essence, от OMG Essence -- "основа", имени стандарта, где подобная диаграмма была предложена), она же диаграмма инженерной деятельности, она же онтология инженерного проекта.
На этой диаграмме основ отражены основные объекты, за изменением которых следит системный инженер, и которые всегда присутствуют в его мышлении. Это не "реальные предметы", это абстрактные сущности (типа "физическое тело", "химическая связь связь"), но с этими сущностями как раз и проводятся реальные размышления -- точно так же, как механик, вычисляющий траекторию выпущенной из ружья пули или летящей от пинка поручика Ржевского болонки абстрагируется от сущности летящих предметов и размышления свои ведёт в терминах "физического тела", про которое ему известны формулы.
Так и в инженерном проекте: системный инженер размышляет в терминах определения и воплощения системы, а не в терминах конкретных целевых систем (которых у него за долгую инженерную жизнь перед глазами пройдёт множество -- как пациентов перед врачом. Да, каждый пациент конкретен, но учат врача работать с пациентами как абстрактными объектами, а не конкретными людьми -- конкретные люди меняются, но знания о них, как о пациентах, у врача более-менее стабильны).
Что мы обсуждаем по диаграмме альф инженерного проекта:
● О чём в проекте нельзя забывать
● Где границы инженерного проекта, отделяющие его от других проектов
● Кто в проекте за что ответственен
● Какие максимальные риски, которые на себя может взять команда и её отдельные члены
● В каком состоянии сейчас проект, что уже сделано и что нужно ещё сделать для получения успешной системы
● ... многое другое, ибо эта диаграмма отражает основные изменяющиеся в ходе проекта сущности и основные связи этих сущностей.
Рекомендуется эту диаграмму распечатать как плакат и повесить на стенку в том помещении, где работают системные инженеры. Это должно гарантировать, что при размышлениях о "воплощении системы" не будут забыты "стейкхолдеры", при обсуждении "команды" не будут забыты "технологии" и т.д.: схема задаёт некоторую мыслительную конструкцию, которой необходимо следовать в рассуждениях. Это не теория, использование данной схемы должно быть практикой.
Настоящий курс системноинженерного мышления будет использовать адаптированный (существенно упрощённый, изменённый для работы с системноинженерными, а не софтверными проектами, а также переведённый на русский язык) стандарт OMG Essence. Этот стандарт разработан в рамках
инициативы SEMAT (http://semat.org).
Утверждение его происходит в консорциуме по стандартизации OMG (Object Management Group, http://www.omg.org).
Адаптация для системной инженерии проводилась TechInvestLab (http://techinvestlab.ru).
Обсуждение этой адаптации и перевода на русский язык проходило на заседаниях Русского отделения INCOSE (http://incose_ru.livejournal.com).
Ситуационная инженерия методов
Для того, чтобы обсуждать, как устроено мышление системного инженера, нам нужно для начала как-то описать инженерную деятельность, построить её "теорию": ввести основные понятия, которые присутствуют в каждом инженерном проекте и затем разные способы работы обсуждать с использованием этих понятий.
Описанием инженерной деятельности занимаются в рамках дисциплины "ситуационная инженерия методов". Она была основана идеологами объект-ориентированного движения, которые задали два основных структурированных (ибо неструктурированные в форме "просто книжки" никто не отменял) вида описания своих способов работы:
● использование "языков паттернов" (ищутся некоторые "паттерны" -- неформально определяемые способы решения задач, при этом каждый паттерн описывается по заранее известному шаблону, в который обычно входит описание проблемы и типовой способ её решения). Ассорти ссылок про языки паттернов тут:
http://ailev.livejournal.com/487783.html.
Паттерны -- это чистой воды эвристики, никаких попыток выйти на какие-то более-менее формальные "языки паттернов" не делалось. Само слово "язык" в
словосочетании "язык паттернов" используется неформально (просто чтобы указать на то, что в проекте используются разные паттерны в разных сочетаниях, как слова из какого-то языка).
● ситуационную инженерию методов, как дисциплина. Стандарты описания метода в такой дисциплине обычно представляет собой "мета-модель": описание языка, используемого для моделирования способов работы.
Системноинженерное мышление коллективно
Ещё одной особенностью теоретической основы системной инженерии является то, что она должна учитывать коллективный характер человеческой деятельности. То есть понятие "система" каким-то образом должно быть увязано с другими понятиями, имеющимися в инженерном проекте -- это явно не понятие "система" в безлюдном мире типа мира естественных наук. Нет, системноинженерное мышление должно учитывать существование людей, оно должно облегчать согласование многочисленных людских интересов по поводу создания успешных систем, должно облегчать коллективную работу. Это означает, что в основе системноинженерного мышления должно быть целостное представление о человеческой деятельности (т.е. повторяющихся, типовых, присутствующих в культуре способах достижения цели -- отдельное уникальное "действие" ведь "деятельностью" не назовут) по созданию успешных систем. Системноинженерное мышление должно помогать размышлять не только о собственно целевой системе инженерного проекта (подводной лодке, компьютере, атомной электростанции, медицинском приборе), но и о системе деятельности ("проекте", обеспечивающей системе), которая создаёт эту целевую систему. Тем самым в основании системноинженерного мышления лежат:
● Системный подход (как думать о системах)
● Ситуационная инженерия методов (как думать о деятельности)

Поэтому появляется третье поколение системной инженерии, моделеориентированная системная инженерия. Она предусматривает использование логических (структурных) и физических (числовых) формальных моделей, которые могут непосредственно быть обработаны (проверены, оптимизированы) компьютером. Это позволяет достигать принципиально другой сложности целевых систем: компьютеры проверяют модели на отсутствие разного рода ошибок в разы более производительно и точно, чем это может сделать человек. Основной особенностью моделеориентированной системной инженерии является то, что используются не только численные физические модели, но и "логические" модели, использующие аппарат дискретной математики, плюс алгоритмические модели на языках программирования.
Четвертое поколение связано с тем, что моделируется уже не только целевая система, но и сами системные инженеры -- их творческие практики. Проводятся гибридные (статистические и логические одновременно) вычисления, характерные для программ искусственного интеллекта, а не нынешних программ физического и логического моделирования, при этом эти все вычисления-моделирования-оптимизации увязаны друг с другом. Особенность четвёртого поколения в том, что не только люди создают модели, а компьютер только проводит вычисления по этим созданным моделям, но и компьютерные программы создают модели: компьютер выполняет творческие функции, которые сегодня выполняет системный инженер. Человек работает в партнёрстве с компьютером, а не программирует компьютер.
Система2
Первое поколение -- это алхинженерия ("алхимическая" инженерия), по аналогии с алхимией по сравнению с химией. Помните алхимические неформальные описания химических реакций в те времена, когда не было ещё развитой химической нотации и понимания различий между химическими элементами и сложными веществами? Вот пример ...
(http://gothicsstyle.ru/2011/02/02/srednevekovaya-alximiya-recepty/)
Современное пояснение: "Философская ртуть -- свинец. Прокалив его, получаем массикот (желтую окись свинца). Это зеленый лев, который при дальнейшем прокаливании превращается в красного льва--красный сурик. Затем алхимик нагревает сурик с кислый виноградным спиртом -- винным уксусом, который растворяет окись свинца. После выпаривания остается свинцовый сахар -- нечистый ацетат свинца (чистый Рb (С2Н302) 2 · 3Н20--это бесцветные прозрачные кристаллы). При его постепенном нагревании в растворе сперва перегоняется кристаллизационная вода (флегма), затем горючая вода -- «пригорелоуксусный спирт» (ацетон) и, наконец, красно-бурая маслянистая жидкость. В реторте остается черная масса, или черный дракон. Это мелко раздробленный свинец. При соприкосновении с раскаленным углем он начинает тлеть и превращается в желтую окись свинца: черный дракон пожрал свой хвост и обратился в зеленого льва. Его опять переводят в свинцовый сахар и повторяют все вновь.
Это общий стиль мышления, речь тут не идёт только об алхимии. С любым знанием сначала так: хорошо ещё, что эти неформальные рассуждения вообще можно записать. Искусство создания более сложных объектов (например, каравеллы) было ровно что искусством: передавалась какая-то традиция, чертежей как таковых не было -- обходились эскизами и макетами, пространными текстовыми описаниями, передававшимися зачастую даже не в книгах, а в рассказах -- от мастера-инженера ученикам.
Классическая системная инженерия использует диаграммную технику -- это уже не вольные поэтические метафоры, как в алхинженерии, но много более строгие определения системы: чертежи, диаграммы, таблицы и т.д.. Но это не полностью формальное описание: его нельзя как-то формально проверить, оно предназначено для чтения и интерпретации только людьми. Если уподобить описание системы компьютерной программе по изготовлению системы, то это такая "программа", которую может выполнить только человек, но не станок-компьютер. Можно назвать это "псевдокодом": непосвящённый человек легко спутает псеводокод с компьютерной программой, но программист понимает, что псевдокод пишется для других людей, а не для компьютера. От псевдокода до реальной программы, реального формального текста на каком-то языке программирования примерно столько же работы, как от общего неформального понимания ситуации человеком до написания программы на псевдокоде.
Учебный проект обычно выполняется командой, в которой участвуют инженеры разных специальностей. Студенты-будущие системные инженеры обычно не любят работать в такой команде: через очень короткое время выясняется, что все представители разных специальностей имеют разные интересы (например, при конструировании автономного робота нужно согласовывать прочность механики, мощность тяжёлой батарейки, мощности моторов, скорость и тем самым тяжесть компьютеров и т.д. -- участники проекта каждый обосновывает необходимость его инженерных решений, несовместимых с требованиями других участников, а системный инженер вынужден решать появляющиеся проблемы). Студенту объясняется, что это и есть его работа: отныне и в будущем он всегда будет в эпицентре разработки, и его задачей как раз является решение всех проблем, возникающих от противоречий требований разных инженерных дисциплин. Его как раз учат адекватному мыслительному аппарату, позволяющему решать такие проблемы, и на этом учебном проекте он должен тренировать свои навыки системноинженерного мышления и учиться получать удовольствие от того, что он
решает казалось бы неразрешимые проблемы.
В качестве примера можно взять программу магистерского курса системной инженерии, который даёт великобританский Loughborough University, всего в этом курсе 180 кредитов (условно можно считать, что один кредит -- это 10 аудиторных учебных часов плюс столько же на самостоятельную подготовку). Обратите внимание на обязательные предметы: системное мышление, системная архитектура, "мягкие" системы (системы, включающие в себя людей), системное конструирование/проектирование (в английском используется одно слово: design, создание трехмерной кострукции материальной системы) -- это всё вместе занимает 60 кредитов , и столько же времени отводится на обязательный индивидуальный учебный проект. Ну, и ещё 60 кредитов тратится на курсы по выбору (инженерные и менеджерские возможности, управление инновациями и предпринимательство, холистическая инженерия, проверка и приёмка, понимание сложности, датчики и приводы).
Когда с простейшим синтаксисом и учебным миром мы проходим ступенечку понимания с маленькими детками и кладём первый участок этих «рельс
алгоритмического мышления», то дальше оказывается возможным пройти и весь курс седьмого класса. Секрет был просто в облегчении прохождения маленькой первой части большого сложного курса. Дитенка не может сразу одолеть сложный текстовый синтаксис, сложный мир робота, понятия алгоритмики. А упрощённый синтаксис и упрощенный мир на меньшем числе операторов алгоритмического языка он одолеть может, и после одоления первой ступеньки этой лестницы сложности дальше легко проходится вся лестница – до самой её вершины. На это изобретение ушло двадцать лет, а без первой ступеньки вся лестница была недоступна.
Мое утверждение в том, что системная инженерия – это вот такие же «рельсы в мозгу» для работы со сложными техническими системами. Если вы перестраиваете ваши мозги на основании курсов системной инженерии, прокладываете в мозгах «рельсы мышления системного инженера», то по окончании учебного курса в вашей голове вы сумеете удерживать как целое более-менее большие системы. Ну, а когда дойдет до уровня искусства, ибо этот уровень неразгаданного ещё мастерства всегда есть, выяснится, что системы, которые у вас удерживаются в голове как целое, много больше, чем те системы, которые удерживаются в голове самоучек, которые выросли в системных инженеров как Кулибины, сами по себе. Почему? Ну, потому что образованный Кулибин, он совсем гениальным Кулибиным будет, если он хорошо образован. А необразованный Кулибин имеет потолок в своей работе, поэтому ракеты у него время от времени будут взрываться и не долетать до той точки, куда надо.

Дочитали до конца.